167 research outputs found

    Solar energetic particle interactions with the Venusian atmosphere

    Get PDF
    Abstract. In the context of planetary space weather, we estimate the ion production rates in the Venusian atmosphere due to the interactions of solar energetic particles (SEPs) with gas. The assumed concept for our estimations is based on two cases of SEP events, previously observed in near-Earth space: the event in October 1989 and the event in May 2012. For both cases, we assume that the directional properties of the flux and the interplanetary magnetic field configuration would have allowed the SEPs' arrival at Venus and their penetration to the planet's atmosphere. For the event in May 2012, we consider the solar particle properties (integrated flux and rigidity spectrum) obtained by the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al., 2010, 2014) applied previously for the Earth case and scaled to the distance of Venus from the Sun. For the simulation of the actual cascade in the Venusian atmosphere initiated by the incoming particle fluxes, we apply the DYASTIMA code, a Monte Carlo (MC) application based on the Geant4 software (Paschalis et al., 2014). Our predictions are afterwards compared to other estimations derived from previous studies and discussed. Finally, we discuss the differences between the nominal ionization profile due to galactic cosmic-ray–atmosphere interactions and the profile during periods of intense solar activity, and we show the importance of understanding space weather conditions on Venus in the context of future mission preparation and data interpretation

    Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    Get PDF
    Abstract. The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed

    The new Athens center on data processing from the neutron monitor network in real time

    No full text
    International audienceThe ground-based neutron monitors (NMs) record galactic and solar relativistic cosmic rays which can play a useful key role in space weather forecasting, as a result of their interaction with interplanetary disturbances. The Earth's-based neutron monitor network has been used in order to produce a real-time prediction of space weather phenomena. Therefore, the Athens Neutron Monitor Data Processing Center (ANMODAP) takes advantage of this unique multi-directional device to solve problems concerning the diagnosis and forecasting of space weather. At this moment there has been a multi-sided use of neutron monitors. On the one hand, a preliminary alert for ground level enhancements (GLEs) may be provided due to relativistic solar particles and can be registered around 20 to 30 min before the arrival of the main part of lower energy particles responsible for radiation hazard. To make a more reliable prognosis of these events, real time data from channels of lower energy particles and X-ray intensity from the GOES satellite are involved in the analysis. The other possibility is to search in real time for predictors of geomagnetic storms when they occur simultaneously with Forbush effects, using hourly, on-line accessible neutron monitor data from the worldwide network and applying a special method of processing. This chance of prognosis is only being elaborated and considered here as one of the possible uses of the Neutron Monitor Network for forecasting the arrival of interplanetary disturbance to the Earth. The achievements, the processes and the future results, are discussed in this work

    Solar perturbations transits in Mercury exosphere

    Get PDF
    The link existing between the dayside Na exospheric patterns of Mercury and the solar wind-magnetosphere-surface interactions is investigated thanks to the synergy of Earth-based observations with the THEMIS solar telescope and the in-situ measurements of the Interplanetary Magnetic Field (IMF) and proton fluxes at the magnetic cusp regions by MESSENGER. Frequently, two-peak patterns of variable intensity are observed, located at high latitudes in both hemispheres. Occasionally, Na signal is instead diffused above the sub-solar region. In a special case, the Na signal is diffused above the subsolar region, when the MESSENGER data detect the transit of two Coronal Mass Ejections (CMEs). Na emission patterns results to be clearly related to the solar wind conditions at Mercury. Hence, the Na exospheric patterns, observed from ground, could be considered as a natural monitor of solar disturbances when transiting near Mercury

    Penetrating particle ANalyzer (PAN)

    Full text link
    PAN is a scientific instrument suitable for deep space and interplanetary missions. It can precisely measure and monitor the flux, composition, and direction of highly penetrating particles (>> \sim100 MeV/nucleon) in deep space, over at least one full solar cycle (~11 years). The science program of PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar physics, space weather and space travel. PAN will fill an observation gap of galactic cosmic rays in the GeV region, and provide precise information of the spectrum, composition and emission time of energetic particle originated from the Sun. The precise measurement and monitoring of the energetic particles is also a unique contribution to space weather studies. PAN will map the flux and composition of penetrating particles, which cannot be shielded effectively, precisely and continuously, providing valuable input for the assessment of the related health risk, and for the development of an adequate mitigation strategy. PAN has the potential to become a standard on-board instrument for deep space human travel. PAN is based on the proven detection principle of a magnetic spectrometer, but with novel layout and detection concept. It will adopt advanced particle detection technologies and industrial processes optimized for deep space application. The device will require limited mass (~20 kg) and power (~20 W) budget. Dipole magnet sectors built from high field permanent magnet Halbach arrays, instrumented in a modular fashion with high resolution silicon strip detectors, allow to reach an energy resolution better than 10\% for nuclei from H to Fe at 1 GeV/n

    Two-year observations of the Jupiter polar regions by JIRAM on board Juno

    Get PDF
    We observed the evolution of Jupiter's polar cyclonic structures over two years between February 2017 and February 2019, using polar observations by the Jovian InfraRed Auroral Mapper, JIRAM, on the Juno mission. Images and spectra were collected by the instrument in the 5‐μm wavelength range. The images were used to monitor the development of the cyclonic and anticyclonic structures at latitudes higher than 80° both in the northern and the southern hemispheres. Spectroscopic measurements were then used to monitor the abundances of the minor atmospheric constituents water vapor, ammonia, phosphine and germane in the polar regions, where the atmospheric optical depth is less than 1. Finally, we performed a comparative analysis with oceanic cyclones on Earth in an attempt to explain the spectral characteristics of the cyclonic structures we observe in Jupiter's polar atmosphere

    Short-term observations of double-peaked Na emission from Mercury's exosphere

    Get PDF
    We report the analysis of short-term ground-based observations of the exospheric Na emission (D1 and D2 lines) from Mercury, which was characterized by two high-latitude peaks confined near the magnetospheric cusp footprints. During a series of scheduled observations from the Télescope Héliographique pour l'Etude du Magnétisme et des Instabilités Solaires (THEMIS) telescope, achieved by scanning the whole planet, we implemented a series of extra measurements by recording the Na emission from a narrow north-south strip only, centered above the two emission peaks. Our aim was to inspect the existence of short-term variations, which were never analyzed before from ground-based observations, and their possible correlation with interplanetary magnetic field variations. Though Mercury possesses a miniature magnetosphere, characterized by fast reconnection events that develop on a timescale of few minutes, ground-based observations show that the exospheric Na emission pattern can be globally stable for a prolonged period (some days) and also exhibits fluctuations in the time range of tens of minutes

    Space Weathering on Near-Earth Objects investigated by neutral-particle detection

    Full text link
    The ion-sputtering (IS) process is active in many planetary environments in the Solar System where plasma precipitates directly on the surface (for instance, Mercury, Moon, Europa). In particular, solar-wind sputtering is one of the most important agents for the surface erosion of a Near-Earth Object (NEO), acting together with other surface release processes, such as Photon Stimulated Desorption (PSD), Thermal Desorption (TD) and Micrometeoroid Impact Vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (Sputtered High-Energy Atoms - SHEA) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze the processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason a new space weathering model (Space Weathering on NEO - SPAWN), is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposedComment: 36 page
    corecore